A regional Bayesian POT model for flood frequency analysis

نویسندگان

  • Mathieu Ribatet
  • E. Sauquet
  • Jean-Michel Grésillon
  • Taha Ouarda
  • Eric Sauquet
چکیده

Flood Frequency Analysis is usually based on the fitting of an extreme value distribution to the series of local streamflow. However, when the local data series is short, frequency analysis results become unreliable. Regional frequency analysis is a convenient way to reduce the estimation uncertainty. In this work, we propose a regional Bayesian model for short record length sites. This model is less restrictive than the Index Flood model while preserving the formalism of “homogeneous regions”. Performance of the proposed model is assessed on a set of gauging stations in France. The accuracy of quantile estimates as a function of homogeneousness level of the pooling group is also analysed. Results indicate that the regional Bayesian model outperforms the Index Flood model and local estimators. Furthermore, it seems that working with relatively large and homogeneous regions may lead to more accurate results than working with smaller and highly homogeneous regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds

Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...

متن کامل

Usefulness of the Reversible Jump Markov Chain Monte Carlo Model in Regional Flood Frequency Analysis

Regional flood frequency analysis is a convenient way to reduce estimation uncertainty when few data are available at the gauging site. In this work, a model that allows a non null probability to a regional fixed shape parameter is presented. This methodology is integrated within a Bayesian framework and uses reversible jump techniques. The performance on stochastic data of this new estimator i...

متن کامل

برآورد هیدروگراف واحد مصنوعی با استفاده از تحلیل منطقه‌ای سیلاب و پارامترهای ژئومورفولوژیکی (مطالعه موردی: حوضه‌های آبخیز مارنج و کانی‌سواران، کردستان)

Estimation of flood hydrograph is of necessities in hydrological studies such as flood mitigation projects. This estimation in un-gauged watersheds is usually taken place using geomorphological characteristics of watersheds. The objective of this research is to estimate synthetic unit hydrograph using regional flood frequency analysis and geomorphological parameters of watersheds. 1-hour and 2-...

متن کامل

Hybrid Regional Flood Analysis in the Namak Lake Watershed

Regional Flood Frequency Analysis (RFFA) is an efficient method in flood discharge estimation in ungauged watersheds or with short-term statistics. The purpose of the present study is to evaluate the hybrid method in RFFA and maximum flood discharge estimation in the Namak Lake watershed, Iran. For this purpose, 16 hydrometric stations were selected. The selected hydrometric stations were then ...

متن کامل

تحلیل فراوانی منطقه‌ای سیلاب با استفاده از روش کریجینگ متعارف در حوزه های آبخیز استان مازندران

Regional analysis is the stability method to improve estimates of flood frequency, which has become one of the dynamic sectors in hydrology and the new theories are testing, constantly. Application of geostatistical method is an innovation in this field for regional flood analysis.This technique is based on the interpolation of hydrological variables in the physiographical space instead of usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006